
One Structure for Both Monolingual and Bilingual Dictionaries

Converting a Large Number of Different Dictionaries to a Single XML Format
Hans de Groot and Pieter Masereeuw

Van Dale Uitgevers

Van Dale converted the source databases of all its dictionaries to a type of XML mainly designed to

capture the function of its elements, rather than their formatting. We found that we could apply the same

principles consistently to various types of dictionaries (monolingual, bilingual) and capture all content

within a single XML structure. The new structure reduces the time needed for our production processes

and for database maintenance. This article reports on our findings during the conversion and the

principles we applied.

1. Introduction

Van Dale is the leading publisher of dictionaries in the Dutch-speaking world. It carries about

150 titles, both monolingual and multilingual, ranging from comprehensive dictionaries to

mini-pocket editions.

During the past year, Van Dale converted the source databases of all its dictionaries to XML.

The immediate reason for the conversion was the introduction of the iLEX editor
1
, but in

addition, we had been looking for a single structural model which we could use for the entire

process, from conception of the title to multi-platform publication. The main objective was to

develop a more focused, manageable, efficient and inexpensive work process.

We wanted to develop a structural model that takes account of every stage of the process. This

model needed to be suitable for content management, content editing and content publication.

Before we started, we determined a number of principles. The actual model came into being

during the conversion.

The result of the project is that all databases now have a single central structure - irrespective

of whether they are monolingual or bilingual. In this article we outline how we achieved this.
2

2. Background

Until the mid 1990s, a dictionary database was the basis for just one product: a book.

Nowadays, many different types of publication can be derived from a single database, each

with its own design: books, CDs, online applications, iPhone/PDA applications, etc. The

number of applications taken from a single publication has drastically increased. But at the

same time, the shelf life of those publications has reduced considerably. When we only had

books, a new edition would be published every five to ten years. In the case of CDs, an update

frequency of about once a year was usual. Online editions call for even more frequent

updates, perhaps even daily: because, after all, doesn’t language change daily too? Updating

and publishing have changed: instead of occasional activities they have become continuous

processes.

1
 iLEX is an XML dictionary writing system, developed by Erlandsen Media Publishing (EMP), Denmark. More

information at www.emp.dk.

2 This article is not based on literature. Instead, it is a report of Van Dale’s experiences with converting its

databases to XML. Although the structure of Van Dale’s databases may not be immediately transferable to those

of other publishers, we feel that the way we approached this problem may be a point of departure for others

wanting to carry out a similar process.

327

http://www.emp.dk/

Hans de Groot and Pieter Masereeuw

To satisfy the demand for more and increasingly frequent publications, we need an efficient

automated production process. Efficiency can be hugely increased if we use a single model to

produce all derivative products. Because a single database can give rise to products in various

media, such a model must be subject to strict rules: the structure of the database file must be

fully predictable.

We found that the Van Dale databases did not meet this requirement. The main obstacles

were:

 The structures used were geared to the design of a particular final product and were

not medium-neutral

 The structures differed per product, which meant that specific and non-reusable

software was needed for each product, which was expensive and time-consuming

 The structures were too intricate: infrequent patterns with low relevance for the

products demanded unnecessarily complex processing software

The above made it clear that intervention in the source files was required. As a result, we

would be able to get rid of the most complex and most error-prone production scripts.

3. Database Principles

In order to arrive at a homogeneous collection of possible article structures, our main

objective was to reach simplicity and transparency. From this objective we derived the

following principles:

 What is the same must be called the same;

 What is not the same must not be called the same;

 Information must be explicit and not be hidden away in external documents or

derivation scripts;

 Information must be able to be brought into production without manual intervention;

 Low-frequency patterns may only be applied if they have genuine added value;

 Structures must be provided with a clear, understandable and consistent nomenclature;

 It must be clear what each structural element is and where it belongs;

 The distinction between content and structure must be well-considered. For example,

if you indicate word class (noun, verb, adjective) not as text, but by means of an XML

element, it is only a small step to making sure that nouns are accompanied by other

XML elements than verbs are, for example.

 Design (formatting) plays no role in structure; function is central. Design is only

linked to structure during product derivation;

 Gaining space by compressing information only occurs during derivation and only

with programmable actions;

 We do not need to reinvent the wheel; we can use insights and techniques that are

already available (for example, from the makers of our iLEX editor);

 The process of redefining structure runs most smoothly if carried out by a small,

dedicated team. There is no need for a broad-based, democratic process. However, the

results will be discussed in detail with all those involved.

If you apply the above principles consistently, the creation of a dictionary turns out not to be

so complicated.

328

Section 1. Computational Lexicography and Lexicology

4. Results

The base structure that we developed is as follows (figure 1):

Figure 1. the base structure

Crucial in the base structure is the sense indicator group. This group makes it possible to use

the same structural model for both monolingual and bilingual dictionaries. In this we deviate

from the usual view of seeing the definition fields in a monolingual dictionary as the

equivalent of the translation fields in a bilingual dictionary. In such a view, these fields would

have the same position in the structure, meaning that the monolingual dictionary would need a

different structural model than the bilingual dictionary.

In our view, bilingual dictionaries also regularly provide information to defining various

meanings. Such definition fields are usually much shorter than those found in a monolingual

dictionary, but in both cases they represent the same, defining, element.

An example: mouse 1. [animal] muis

2. [comp.] muis

In our new structure, we call the labels [animal] and [comp] sense indicators. They are

comparable to the (much more comprehensive) definitions in a monolingual dictionary. The

sense indicator group therefore contains all information that is essential to a meaning (sense)

of the word. In monolingual dictionaries, this is what it is all about; in bilingual dictionaries

this group is primarily used when there is a need to distinguish between various meanings.

In bilingual dictionaries, the sense-indicator group will be followed by a translation group;

obviously, the translation group will not be present in monolingual dictionaries.

The base structure itself contains both groups. We decide per product which group(s) are to be

included in the product structure and which rules are to be applied.

5. Reuse of Structures

Another characteristic of the new base structure is that it can be continually reused. The

information you give with an example sentence is, in essence, no different to the information

you give at headword level: both structures have a head (the word or example sentence that

has to be explained or translated) and a body (the explanation or translation). The element

329

Hans de Groot and Pieter Masereeuw

containing the translation of the example sentence does not itself require a name. The fact that

the translation is contained in the example group provides sufficient information. The element

containing the translation of the example sentence can therefore have the same name as the

element containing the translation of a headword. This reduces the number of named XML

elements required.

6. Tailoring the New Structure

Reusing the same structure over and over again for all the Van Dale dictionaries sounds great

in theory, but does it work in practice? In the XML world, dictionary articles are XML texts,

and good XML texts require a formal definition of structure, laid down in a DTD or an XML

Schema file. During the project, we found that we could in fact use just a single XML

structure for all our dictionaries.

We chose W3C XML Schema to define our structure formally. We augmented the structure

with Schematron rules. The difference between Schema and Schematron is that Schema lets

you define the contents and order of fields, whereas Schematron can enforce long-distance

dependencies. For instance, in Schema it is hard or impossible to specify that the headword of

a reflexive verb should be accompanied by a reflexive pronoun, but in Schematron you can –

and easily.

Now, after conversion, all Van Dale dictionary structures are contained in just one XML

structure. In addition, each dictionary has a derived structure specific to that title. The derived

structure is created automatically from underlying structures and Schematron files. One of the

benefits of XML Schema and Schematron is that they are XML languages in themselves,

which makes it possible to apply XML transformation techniques such as XSLT. This is what

enables us to define and maintain one large, abstract structure for all Van Dale dictionaries,

and to derive concrete, tailored dictionary-specific Schema and Schematron files

automatically from that one structure. We need derived structures for specific dictionaries

because we need to be able to switch certain fields on and off, depending on the language and

the type of dictionary.

Although the Schema standard has several built-in mechanisms to enable the user to extend or

redefine the structure, when working with this program we actually found these mechanisms

cumbersome, unnatural and overly complex. We therefore decided to define our own

mechanism, which is not ideal but does have the benefit of being simple to understand and

maintain.

Our mechanism makes it possible to mark sections of Schema and Schematron rules with so-

called processing instructions. With processing instructions, we can specify to which

dictionaries a certain section are is relevant. Also, processing instructions can be used to

redefine the repeatability of field sequences (optional, zero or more times, one or more times).

7. Conclusion

By avoiding complexity and maintaining transparency, we made the dictionary creation

process much more efficient and cost-effective. We could capture the content of many

different types of dictionaries, monolingual and bilingual, within just one structure. By doing

so, we made our editorial process much less elaborate. The new structure also greatly

enhances software reusability.

330

